此制剂是氟羟强的松龙乙腈含丙酰纤维素等粘 膜附着剂,与过去的软膏和比,能使药物在患部组织保持长时间的高浓度。

此外,由于口服给药时肝抽样比率及肝第一关卡效应高,通过双盲法试验,吗啡含片比肌注的生物利用度还高,疗效虽不理想,但临床报道有充分缓解疼痛作用。过去曾不太注意,口腔粘膜角质化的齿龈可

做给药部位,现在已知,此处适于贴敷前列腺素 $F_{2\alpha}$ 贴效剂,能促进牙齿移位,有矫正牙齿的效果。

加上所述, 由于清楚了解口腔粘膜对药物吸收的特性,可考虑据其特点设计制剂。现在,对口腔粘膜这个既占老又新鲜的给药部位, 应重新评价,包括其他粘膜。有关药物膜通透性的人工控制, 有待今后进一步研究。

表 2

口腔粘膜不同部位的结构

部位	上	皮	粘	膜 固 有 层	粘膜下层	粘 膜 类 型
	厚度	角化度	乳 头	纤维类型	密度 附着形式	
口唇及颊粘膜	厚	未角化	短、不规则	胶原纤维及少量弹性纤维	密肌肉紧密	保护粘膜
唇红	薄	角化	细长	胶原纤维及少量弹性纤维	密肌肉紧密	特殊粘膜
齿龈粘膜	薄	未角化	短或缺少	多量的弹性纤维	稀 稀疏地附着于骨膜	保护粘膜
附着齿肉	厚	角化及角化不全	细长;	致密的胶原纤维坚固地附着于骨膜上	无 无	咀嚼粘膜
口床	薄	未角化	短、广泛	胶原纤维与少量的弹性纤维	稀 稀疏地附着于肌肉	保护粘膜
舌腹部	薄	未角化	短、多数	胶原纤维与少量的弹性纤维	. 不明	保护粘膜
舌背(前2/3)	厚	以角化为主	长	胶原纤维与少量的弹性纤维	不明	特殊粘膜 (味觉)
舌根(后1/3)	多样	通常未角化	短或缺乏	胶原纤维与少量的弹性纤维	不明	特殊粘膜 (味觉)
硬腭	厚	角化	长	侧部粘膜下组织由致密的胶原组层, 附着于粘膜固有层。	维构成,中部无粘膜下	咀嚼粘膜
软腭	厚	未角化	短	多量的弹性纤维	稀 下层组织附着稀疏	保护粘膜

黑崎勇二 他: 医学のあゆみ 145(7): 468, 1988.

赵蓮坤 译 姚警钟 校

生物磁场及其测试

生物磁场

3

生物磁场研究内容包括。①体内活动电流在体外激发磁场,用体外磁力计诊断疾病;②外界磁场,特别是强磁场用于治疗疾病;③给人体加强磁场使体内元素,尤其是氢元素发生核磁共振,由此而构成核磁共振影像用于诊断疾病;①将带磁粒子加入药物,经体外磁场引导,使药物到达需要地点,提高药物药效。或使体内巨噬细胞吞食磁性粒子,通过测定磁场动态,研究巨噬细胞活动范围。

生物磁场发生机制及强度

产生生物磁场的因素有二。一是生物电流,二是进入体内的磁性物质。前者为脏器的生物电活动如心脏、肢体、脑等,后者磁化作用多发生于肺、肠、肝等器官中。

生物磁场很弱,一层磁调量型磁力计的灵敏度只有10⁻¹°T, 只能用来测加磁场,要测定比 这 还弱的 磁场,则需要使用 SQUIES (点换值超导电子干涉磁力计)。

SQUID目前右两型。直流型dcSQUID 和高频型

rfSQUID,前者的灵敏度高于后者。SQUID 的工作条件是-270℃,要用液氮降温,一次测定 要消耗20~30升液氦,因此它是一种价格昂贵的仪器。目前正在研究用液氮来代替液氦,以降低费用。

磁屏蔽

强磁杂音环境中,不能检出弱的生物 磁 信号, 因此测定需要在与外界磁场隔绝的条件下进行。 能消 除磁杂音的装置叫磁屏蔽室。

用合理组合各种磁束检出线圈,以消除磁杂音的仪器,以取代价格昂贵的磁屏蔽室的实验,目前正在若干个实验室中进行,但在城市中,目前仍然离不开磁屏蔽室。

在生物磁场研究中有待解决的问题有。①用液氮代替液氮,或设计可以反复利用液氮的SQUID,②提高SQUID 的解析力和精密度,③研究通过电子计算机来有效地消除杂音。

小谷誠: 医学のあゆみ 145(8)527,1988.

丁 汉 译